Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Transl Med ; 21(1): 374, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20243655

ABSTRACT

BACKGROUND: Although mRNA vaccines have overall efficacy preventing morbidity/mortality from SARS-CoV-2 infection, immunocompromised persons remain at risk. Antibodies mostly prevent early symptomatic infection, but cellular immunity, particularly the virus-specific CD8+ T cell response, is protective against disease. Defects in T cell responses to vaccination have not been well characterized in immunocompromised hosts; persons with lung transplantation are particularly vulnerable to vaccine failure with severe illness. METHODS: Comparison groups included persons with lung transplantation and no history of COVID-19 (21 and 19 persons after initial mRNA vaccination and a third booster vaccination respectively), 8 lung transplantation participants recovered from COVID-19, and 22 non-immunocompromised healthy control individuals after initial mRNA vaccination (without history of COVID-19). Anti-spike T cell responses were assayed by stimulating peripheral blood mononuclear cells (PBMCs) with pooled small overlapping peptides spanning the SARS-CoV-2 spike protein, followed by intracellular cytokine staining (ICS) and flow cytometry for release of cytokines in response to stimulation, including negative controls (no peptide stimulation) and positive controls (phorbol myristate acetate [PMA] and ionomycin stimulation). To evaluate for low frequency memory responses, PBMCs were cultured in the presence of the mRNA-1273 vaccine for 14 days before this evaluation. RESULTS: Ionophore stimulation of PBMCs revealed a less inflammatory milieu in terms of interleukin (IL)-2, IL-4, and IL-10 profiling in lung transplantation individuals, reflecting the effect of immunosuppressive treatments. Similar to what we previously reported in healthy vaccinees, spike-specific responses in lung transplantation recipients were undetectable (< 0.01%) when tested 2 weeks after vaccination or later, but were detectable after in vitro culture of PBMCs with mRNA-1273 vaccine to enrich memory T cell responses. This was also seen in COVID-19-recovered lung transplantation recipients. Comparison of their enriched memory responses to controls revealed relatively similar CD4+ T cell memory, but markedly reduced CD8+ T cell memory both after primary vaccination or a booster dose. These responses were not correlated to age or time after transplantation. The vaccine-induced CD4+ and CD8+ responses correlated well in the healthy control group, but poorly in the transplantation groups. CONCLUSIONS: These results reveal a specific defect in CD8+ T cells, which have key roles both in transplanted organ rejection but also antiviral effector responses. Overcoming this defect will require strategies to enhance vaccine immunogenicity in immunocompromised persons.


Subject(s)
COVID-19 , Transplant Recipients , Humans , CD8-Positive T-Lymphocytes , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Antibodies , Cytokines , Lung , Antibodies, Viral
2.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2283663

ABSTRACT

Introduction While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.

3.
Front Immunol ; 14: 1100594, 2023.
Article in English | MEDLINE | ID: covidwho-2283664

ABSTRACT

Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods: Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results: In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion: Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Cytokines , Antibodies, Viral , Enzyme-Linked Immunospot Assay
4.
Communications medicine ; 2(1), 2022.
Article in English | EuropePMC | ID: covidwho-2057874

ABSTRACT

Background A comprehensive understanding of the SARS-CoV-2 infection dynamics and the ensuing host immune responses is needed to explain the pathogenesis as it relates to viral transmission. Knowledge gaps exist surrounding SARS-CoV-2 in vivo kinetics, particularly in the earliest stages after exposure. Methods An ongoing, workplace clinical surveillance study was used to intensely sample a small cohort longitudinally. Nine study participants who developed COVID-19 between November, 2020 and March, 2021 were monitored at high temporal resolution for three months in terms of viral loads as well as associated inflammatory biomarker and antibody responses. CD8 + T cells targeting SARS-CoV-2 in blood samples from study participants were evaluated. Results Here we show that the resulting datasets, supported by Bayesian modeling, allowed the underlying kinetic processes to be described, yielding a number of unexpected findings. Early viral replication is rapid (median doubling time, 3.1 h), providing a narrow window between exposure and viral shedding, while the clearance phase is slow and heterogeneous. Host immune responses different widely across participants. Conclusions Results from our small study give a rare insight into the life-cycle of COVID-19 infection and hold a number of important biological, clinical, and public health implications. Plain language summary Managing the response to the COVID-19 pandemic requires information about how quickly the virus reproduces and the effect on the immune system of the person who is infected. We measured the speed at which SARS-CoV-2 reproduces in unvaccinated individuals at various timepoints between when they first became infected, and there was no longer any detectable virus present in their bodies. We also measured changes in their immune response. Our findings can be used to develop guidelines for the clinical management of COVID-19 patients and optimize testing procedures to determine whether people are infected with SARS-CoV-2. Gunawardana et al. monitor the viral load, inflammatory biomarkers and antibody response long-term in people who developed COVID-19. Early viral replication is rapid, providing a narrow window between exposure and viral shedding.

5.
mBio ; 12(6): e0265621, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1555537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve in humans. Spike protein mutations increase transmission and potentially evade antibodies raised against the original sequence used in current vaccines. Our evaluation of serum neutralizing activity in both persons soon after SARS-CoV-2 infection (in April 2020 or earlier) or vaccination without prior infection confirmed that common spike mutations can reduce antibody antiviral activity. However, when the persons with prior infection were subsequently vaccinated, their antibodies attained an apparent biologic ceiling of neutralizing potency against all tested variants, equivalent to the original spike sequence. These findings indicate that additional antigenic exposure further improves antibody efficacy against variants. IMPORTANCE As SARS-CoV-2 evolves to become better suited for circulating in humans, mutations have occurred in the spike protein it uses for attaching to cells it infects. Protective antibodies from prior infection or vaccination target the spike protein to interfere with its function. These mutations can reduce the efficacy of antibodies generated against the original spike sequence, raising concerns for reinfections and vaccine failures, because current vaccines contain the original sequence. In this study, we tested antibodies from people infected early in the pandemic (before spike variants started circulating) or people who were vaccinated without prior infection. We confirmed that some mutations reduce the ability of antibodies to neutralize the spike protein, whether the antibodies were from past infection or vaccination. Upon retesting the previously infected persons after vaccination, their antibodies gained the same ability to neutralize mutated spike as the original spike, suggesting that the combination of infection and vaccination drove the production of enhanced antibodies to reach a maximal level of potency. Whether this can be accomplished by vaccination alone remains to be determined, but the results suggest that booster vaccinations may help improve efficacy against spike variants through improving not only antibody quantity, but also quality.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Young Adult
6.
mSphere ; 6(4): e0054221, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1299220

ABSTRACT

Public health practices and high vaccination rates currently represent the primary interventions for managing the spread of coronavirus disease 2019 (COVID-19). We initiated a clinical study based on frequent, longitudinal workplace disease surveillance to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission among employees and their household members. We hypothesized that the study would reduce the economic burden and loss of productivity of both individuals and small businesses resulting from standard isolation methods, while providing new insights into virus-host dynamics. Study participants (27 employees and 27 household members) consented to provide frequent nasal or oral swab samples that were analyzed by reverse transcription-quantitative PCR (RT-qPCR) for SARS-CoV-2 RNA. Two study participants were found to be infected by SARS-CoV-2 during the study. One subject, a household member, was SARS-CoV-2 RNA positive for at least 71 days and had quantifiable serum virus-specific antibody concentrations for over 1 year. One unrelated employee became positive for SARS-CoV-2 RNA over the course of the study but remained asymptomatic, with low associated viral RNA copy numbers, no detectable serum IgM and IgG concentrations, and IgA concentrations that decayed rapidly (half-life: 1.3 days). A COVID-19 infection model was used to predict that without surveillance intervention, up to 7 employees (95% confidence interval [CI] = 3 to 10) would have become infected, with at most 1 of them requiring hospitalization. Our scalable and transferable surveillance plan met its primary objectives and represents a powerful example of an innovative public health initiative dovetailed with scientific discovery. IMPORTANCE The rapid spread of SARS-CoV-2 and the associated COVID-19 has precipitated a global pandemic heavily challenging our social behavior, economy, and health care infrastructure. In the absence of widespread, worldwide access to safe and effective vaccines and therapeutics, public health measures represent a key intervention for curbing the devastating impacts from the pandemic. We are conducting an ongoing clinical study based on frequent, longitudinal workplace disease surveillance to control SARS-CoV-2 transmission among employees and their household members. Our study was successful in surveying the viral and immune response dynamics in two participants with unusual infections: one remained positive for SARS-CoV-2 for 71 days, while the other was asymptomatic, with low associated viral RNA copy numbers. A COVID-19 infection model was used to predict that without surveillance intervention, up to 7 employees would have become infected, with at most 1 of them requiring hospitalization, underscoring the importance of our program.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pandemics/prevention & control , Public Health , RNA, Viral/immunology , Workplace , Young Adult
7.
ACS Nano ; 15(7): 11180-11191, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1279811

ABSTRACT

Studies of two SARS-CoV-2 mRNA vaccines suggested that they yield ∼95% protection from symptomatic infection at least short-term, but important clinical questions remain. It is unclear how vaccine-induced antibody levels quantitatively compare to the wide spectrum induced by natural SARS-CoV-2 infection. Vaccine response kinetics and magnitudes in persons with prior COVID-19 compared to virus-naïve persons are not well-defined. The relative stability of vaccine-induced versus infection-induced antibody levels is unclear. We addressed these issues with longitudinal assessments of vaccinees with and without prior SARS-CoV-2 infection using quantitative enzyme-linked immunosorbent assay (ELISA) of anti-RBD antibodies. SARS-CoV-2-naïve individuals achieved levels similar to mild natural infection after the first vaccination; a second dose generated levels approaching severe natural infection. In persons with prior COVID-19, one dose boosted levels to the high end of severe natural infection even in those who never had robust responses from infection, increasing no further after the second dose. Antiviral neutralizing assessments using a spike-pseudovirus assay revealed that virus-naïve vaccinees did not develop physiologic neutralizing potency until the second dose, while previously infected persons exhibited maximal neutralization after one dose. Finally, antibodies from vaccination waned similarly to natural infection, resulting in an average of ∼90% loss within 90 days. In summary, our findings suggest that two doses are important for quantity and quality of humoral immunity in SARS-CoV-2-naïve persons, while a single dose has maximal effects in those with past infection. Antibodies from vaccination wane with kinetics very similar to that seen after mild natural infection; booster vaccinations will likely be required.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Antibody Formation , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL